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Abstract —Guided by the orthotropy rescaling technique and other available analytic results, a
systematic analysis is conducted for commonly used fracture specimens to investigate the role of
material orthotropy in fracture behavior of unidirectional compuosites. Tncluded are notched bars,
delamination beams and hybrid sandwiches, of many varieties. All aumerical calibrations are
presented with fittting formulae in the relevant parameter regimes. The effect of material orthotropy
on fracture behavior of unidirectional composites is thus quantitied, which signiticantly reduces the
complesities involved in both experimental investigation and theoretical modelling. A summary of
the orthotropy rescaling concepts, with some extensions, is also included.

L AINTRODUCTION

This paper is part of our cfiort to study the fracture behavior of composite faminates.
Several mechanics issues in delamination testing have been studied in recent works. First,
laminates are usually anisotropic and heterogencous, as exemplified by a laminated polymer
composite. Delamination specimen calibration is complicated by many clustic constants.
The [rwin -Kies compliance calibration is frequently used as a substitute, but the calibration
obtained in this way should only be valid for the material being tested, and moreover, mode
mixity cannot be determined. An orthotropy rescaling technique has been developed which,
as demonstrated by Suo ¢ ¢f. (1990), can reduce plane clastic problems for orthotropic
materials to equivalent ones for materials with cubic symmetry. The technique has been
used to gain insight into the interplay between anisotropy and finite geometry, and study
technical problems such as stress concentration related cracking, effective contraction of
orthotropic material specimens, mixed mode delamination and crack deflection,

A sccond issue is that delamination resistance depends strongly on mode mixity, the
relative proportion of the opening and sliding. The concepts of mode mixity and toughness
surface, as rationalized by Rice (1988) lor interfaces in isotropic solids, have been extended
to solids of arbitrary anisotropy (Suo. 1992: Wang ¢r af.. 1990). It 15 essential to develop
mixed mode specimens in order to have a complete characterization of delamination.

A third issue is the so-called large-scale bridging. Delamination is resisted by intact
fibers that cross over crack planes, or by damage in the matrix in the form of voids and
micro-cracks. The length of the damage zonc is typically several times the beam thickness.
Conscquently, delamination resistance is no longer a material property independent of
specimen geometry and size. The implications have been studied by Bao et al. (1990), Suo
et al. (1992) and Spearing and Evans (1991).

Calibration of fracturc specimens plays an important role in both the measuring and
modelling of composite fracture and fatigue resistance. However. the existing numerical
calibrations are rather complex and sometimes erroneous. Guided by the orthotropy resca-
ling and other analytical results, we present here a catalog of commonly used fracture
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specimens for unidirectional composites. An outline of the orthotropy rescaling method is
given in the next section, but readers only interested in specimen calibrations may skip this.
Notched bars, delamination beams and hybrid sandwiches are described in the subsequent
sections. The scope may be appreciated by looking ahead at the figures in the paper. All
numerical calibrations are presented with fitting formulae in the relevant parameter regimes.
The effect of orthotropy on the fracture behavior of unidirectional composites is thus
quantified, which significantly reduces the complexities involved in both experimental inves-
tigation and theoretical modelling. as exemplified by the recent study of fatigue crack
growth in a fiber-reinforced metal matrix composite (Bao and McMeeking. 1991).

2. ORTHOTROPY RESCALING

Consider an orthotropic solid in a plane stress state. Plane strain deformation is treated
in the Appendix. The coordinates x and » coincide with the principal axes 1 and 2 of the
orthotropic material. Two dimensionless parameters, 4 and p. are defined in terms of the
engineering elastic constants (Suo, 1990a.b) :

p= 2 =tz T (1

They characterize the in-plane orthotropy : 4 = p = | for isotropic materials and, 4 = | for
solids with cubic symmctry. Typical values of 4 and p are in the range 0.05 < £ < 20 and
0<p<s.

Let U(x. ») be the Airy function so that stresses at equilibrium are derived from

e OU o 2)
O, = . .. O,= _ ,. T,=—_ .. 2
Y0y T t ox iy

+240 T i =, 3)

E= Ay, (4)
reduces eqn (3) to
o MU &
257 2 i+ oy =0, 5
aev T &1 oy &yt )

The equation depends on p only. The boundury conditions for U(&, v) are now changed to

n2 N2 sl
a-U o~ U ¢
; 12 = 14 —
O = 420 A 70, = . ¢ Tw =~ 4,4 - (6)
) as cooy
The resultant forces on an arc arc
T,=aUldy. + ''T, = — QUL (7)

With /-dependence extracted explicitly, the boundary value problem, defined by eqns
(5) and (6) on the &-y-plane. now has only one material parameter, p. Several applications
of this idea can be found in Suo et al. (1990).

Displacements can be determined by using an auxiliary function x(&. v). defined by
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Strain compatibility requires that
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One may confirm that eqn (5) can be derived from eqns (8) and (9) by eliminating ¥.
In terms of U7 and y. displacements are represented by
Ewu, =i~ on/ey— (144" v ) U] (10a)
E.u, = 2" [0g/eé — (L +vy)) eU/EY). (10b)

In particular, the displacement jumps across a plane, with traction continuity maintained,
are

(E\E)"VFA Y8, = (O/én) —(Oy/cv) - (11a)
(E\E2)"30, = (/28" = (x/08) . (11b)

These equations are valid for cracks and dislocations.
Consider a crack running in the x-direction, which coincides with the principal material

axis [. The stress intensity tactors are defined such that the stresses at a distance r ahead
of the crack tip are given asymplotically by

The crack opening and sliding displacements at a distance r behind the crack tip are

. A N L
[()",()‘] = 8<7E|g,> \/2’;t [/.‘ l'rll\’l,/.f |'4K||]. (‘3)

The energy release rates are related to the stress intensity factors by

F+p N7 s o en
[G\.Gy] = (32575") (4 KA (14)
b b2
and the total energy release rate is
G=G]+G”. (IS)

These crack tip results were derived by Sih et al. (1965).
From eqns (6) and (12), the stress intensity factors can be expressed as

N2 a!U
;- MR g 02U e 2
ra "3A| ~(2ng)l' JTT . A IﬂA”“" —(21{&)' az’ B
(¢4 cdy

(16)

-

These combinations are essential in using the orthotropy rescaling.
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K, = ov7a Y(p)F(ab). Y(p) = 140.1(p-1-0.016(p- 1 +0.002(p-1)"

- ﬂ{a Singie-Edge-Notched {(SEN)
- -
- b -7 o 72 0752+ 202(b)+0.37 L-singy)?
ha - Fumi=\{ = 1an 5 =
ma 2 Ja
s 2L — coss
- 12 = Double-Edge-Notched (DEN)
% b -0
fa F(a/b) = | 140.122 cos*i-g]‘\fgmn 5
- L —~i
c: b OIZJ ::c Center Cracked (CC)
-— - . ) n
F(w/b) = [ 1-0.025(x/b)* +0.06(a/b)* r\/ sec 55
o 2L ~
HL& Edge-Notched-Bend (ENB)
i3
« : )N e ey
(afb) = na an b R
= 2L - CO%3b

Fig. 1. A family of notched bars. Stress intensity Factors are given with the correction fiuctor Y(p)
due to nutertal orthotropy,

3ONOTCHLED BARS

Four notched burs are considered, as shown in Fig. 1. A survey of the relevant literature
muy be found in Kageyama (1989).

Dimensionality, lincarity and orthotropy rescaling dictate that the stress intensity
factors take the form:

K, = rr\,/ml[-'(u/'h. AUALD. p). (17
Here # is the applied stress for SEN, DEN and CC specimens and
a=6MbD* (18)

for ENB specimen Joaded by the moment A,

Note that in eqn (17). the material parameter 2 and the geometric parameter L/b are
combined in the way required by orthotropy rescaling. Finite clement analysis is used to
determine the dimensionless function £ The calculation shows that the effect of 2' L/jb is
negligible when ' *L/h > 2.0; see Fig. 2. Consequently, this composite parameter is elim-
inated from the calibration.

Figure 3 reveals the effect of p on the stress intensity tuctors of the SEN specimen. An
inspection of the curves suggests an approximate factorization



Matenal orthotropy in fracture spectmens 1109

1.65
L LR | LA B rrr1rr T T T T L LA ]ﬁ:
L o
- U= T
16— -1
- M b M A
- g
- -
L fo— 2L ~ -
1.55 |— —
lg - .
=~ [ .
x » -
1.5 — —1
- .
.
L .
145~ -
- ab =05, p=1 B
- -1
L _<
04 AT I A AN ST ST ST SN SN I ST AT G ST O A IR A S
0 1 2 3 4 5 6
Auo

Fig. 2. The stress intensity factor of the notched specimen essentially attains the steady-state when
AL =2 Values of a'h = 0.5, p = | are chosen for the plot, but the same is true for other values
of aband p.

K = o'\/;ﬁi Y(p) F(a/'h). (19)

The same is true for DEN, CC and ENB specimens, The geometry dependence, Fla/b), is
the same as the corresponding function for an isotropic material (Tada ef al.. 1985). Our
calculations show that, for all four specimens, the fuctor ¥Y(p) can be fitted by a single
function:

Y(p) = L+0.1(p=1)=0.016(p = 1) +0.002(p-1)" (20)

with a satisfactory accuracy (error €2% for SEN and ENB; error €£5% for DEN and

CQ).
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Fig. 3. p-dependence of stress intensity factors of single edge noteched specimen. [tis found that for
notched specimens, this p-dependence is insensitive to crack length change.
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In summary, for materials with 0 < p £ 4 and any value of 4, the stress intensity
factors of the notched bars may be obtained by first taking the corresponding F(a b) for
an isotropic material (reproduced in Fig. 1). and then multiplying by ¥{(p) of (20).

4. MODE | AND MODE 1l DELAMINATION BEAMS

Depicted in Fig. 4 are the delamination beams most widely used in the composite
community. The double-cantilever-beam (DCB) is mode I. and the end-notched-flexure
(ENF) and end-loaded-split (ELS) are mode II. Surveys of the relevant literature can be
found in Davies and Benzeggagh (1989) and Carlsson and Gillespie (1989).

[t has been shown in Suo er al. (1990) that the mode [ energy release rate for the DCB
takes the form:

_12(Pa)’

Gr= g [+ Vi(p)A™ " *hial. 2D
1

where P is the applied load per unit width of the beam. The first term in the bracket
reproduces the result of elementary beam theory, which is an exact elasticity asymptote as
a/h = . The second term is the first order correction due to a finite a/h. The factor Y,
depends on p only. The formula that best fits finite element results is

Yi(p) = 0.677+0.146(p - 1) =0.0178(p = 1)* +0.00242(p - 1)". (22)

Within the practical range 4' *a/h > 2 and 0 < p < 4, the erroris fess than 1%,
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(c) End-Notched-Flexure (ENF)
Fig. 4. Mode | and Mode [ delamination beams. P is the load per unit width of the specimen.
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For ELS specimen. a similar procedure leads to

9(Pa)*

Gu =W[|

+ Y||(p)}.— l‘.‘h/a]: (:3)

where

Yu(p) = 0.206+0.0761(p— 1) —0.00978(p—1)>+0.00112(p - 1)". (24

The error is less than 1% for A" *u/h 2 2and 0 < p < 4.

An independent finite element calculation (He and Evans, 1991) shows that, for ENF
specimen with sufficiently large L/h, the mode Il energy release rate has the same calibration
as given by (23) and (24). as might be expected.

5. MIXED MODE DELAMINATION BEAMS

Figure § illustrates two designs of mixed mode delamination beams. Without loss of
generality. attention will be restricted to H 2 h. Since G = G+ Gy,. only G and G, will be
presented.

S.1. Mixed mode double-cantilever-beam
Guided by elementary beam theory solutions and orthotropy rescaling, we assume that
the total energy release rate has the following form :

. 6(Pa)}

;= 'F hi' (|+II‘)[|+ Yl(/’)”(ﬂ)l_“"h/“]z 25)
“1

where oy = i/ H. The factor ahead of the [4] is determined from the simple beam theory
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(a) Mixed Mode Double-Cantilever-Beam

(b) Mixed Mode End-Loaded-Split

Fig. 5. Mixed mode delamination beams.
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solution which is the exact asymptote as h ¢ — 0. Numerical calculations show that the
function Y,(p) can be taken to be identical to eqn (22). and the function B(n) can be
approximated as

B(n) = 1.120—-0.695(n —0.585)>. (26)

Within the practical range 4" *a/h > 2, 0.1 < n < 1 and 0 < p < 4. the error is within 2%.
Our calculations indicate that some elementary rules for partitioning total G into G,

and G, lead to erroneous results. Thus, rigorous finite element results will be used as the

basis. The steady-state solution for a/h — ¢ given in Suo (1990) suggests the following
form for the mode I energy release rate:

6(Pa)* s , 5
Gi = 2P (L) sin’ 91+ ¥i(o) ()i~ “hia)” @n
1

where Y, is given by (22), and

Bi(n) = 1 +0.546(1 —n). (28)

and

() = (0.574+0.033+0.8057 — 0413y ") - . (29)

The error in eqn (27) is within 2% for A" *a h 22,02 <n < land 0 < p < 4.
5.2. Mixed mode end-loaded-split
It is apparent that the encrgy release rate for mixed mode ELS with # = & can be

obtained by adding eqns (21) and (23). For #H # h, the total energy release rate is

G = 8P

g =U+1m) THi+ X)L+ F(p)( =m)A~ " hja)? (30)
|

where the factor ahead of the {*} is determined from the simple beim theory solution which
is the exact asymptote as #/a — 0. The factor ¥(p) in eqn (30) is given by

Y(p) = 0.484+40.122(p—1)=0.016(p—1)2+0.002(p—1)°. (31)
Fitting numerical results yields:
F(p) = 0.468 exp (—0.181,/p). (32)

Similar to the mixed mode DCB, the mode I energy release rate for mixed mode ELS
is fitted by

Pa)’ , ,
G = At L5 1+ V()1 + Fi o)1 )i~ *hfa)’ (Y
|

The function A(n) is given in Suo (1990) :

A(n) = 3.7334-0.2231—0.8675° +0.3561°, 34)

while
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Fi(p) = 0.5185-0.0244p (35)

is based on the finite element calculation. Withia a 2% error, eqns (30) and (33) are valid
for2"ah22,02<y<and 0L p <4

5.3, Mode mixity
The mode mixities of the two specimens it Fig. 5 are usually assumed to remain
constant as the cracks grow. This is incorrect € a/f is not very large. Plotted ia Fig. 6a.b
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Fig. 6 Mode mixity of mixed mode delamination beams for ¢ = 2. ta) Mixed mode DUB.
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are mode mixities of mixed mode DCB and ELS. respectively. Our calculation indicates
that the dependence of mode mixity on material parameter p is weuk. so only thecase p = 2
1s presented.

Observe, first, that the thickness ratio. # A, has a strong effect on the mode mixity. as
might be expected. The mode mixity. specitied by the ratio Gy 'G,. may vary from zero to
0.6 for the mixed mode DCB and from zero to 0.75 for the mixed mode ELS. Such specimens
are therefore suitable for studying mixed mode crack extension in laminates.

Secondly, the mode mixity changes with the effective crack length. 2' *u/jh. The fixed
mode mixitics obtained by elementary beam theory solution are asymptotes as a'h — .
However. for the mixed mode DCB. the relative changes of mode mixity are less than 10%
for 10 < 4" *u’h < 20. For the mixed mode ELS. much larger 4" *a/h is needed to attain
the asymptotes.

6. HYBRID SANDWICHES

Hybrid laminates with alternate sheets of ceramics, metals, polymers or composites
have been candidates for advanced applications. For such systems. cracking in brittle layers
is isolated by the adjacent tough layers, so that the damaged luminates still support the
load. Hybrid laminates can also provide additional stiffness for certain experimental needs.
For example, in an cxperimental study of the effect of cross-over fibers on delamination
resistance (Spearing and Evans, [991). the ceramic matrix composite being tested is sand-
wiched between two alumina layers, in order to provide a higher constraint to obtain a
tonger bridging zone.

Depicted in Fig. 7 is a hybrid sandwich with a core between two identical skins. The
axial force P is appliecd within the neutral plane of the beam. Each material may be
orthotropic with a principal material axis aligned in the beam direction. Young's moduli
in the direction of the beam axis for the skins and core are denoted by £ and EY, respectively.

We will consider a class of steady-state. mixed mode, hybrid delamination sandwiches,
as iltustrated in Fig. §. The energy release rates are independent of crack length, since only
axial force and pure moments are applicd. Only mode [ and mode 11 loadings are shown
in Fig. 8. Friction in mode 1 specimens (Fig. 8b,d) is neglected ; the effect should be
independently calibrated. Mixed mode loading can be obtained by superposition. For
example, the UCSB four-point-flexure is a superposition of Fig. Ba, b,

The relative stiffness is controlled by two ratios

Y= EMNES, ¢ = hb. (36)

The position of the neutral axis is given by
— (37)

The strain field at the three edges far away from the crack tip can be obtained from the
elementary beam theory. For example, the axial strain in one of the arms is given by

ncutra} axis

Fig. 7. A hybrid sandwich specimen. The axial force is applied within the neutral plane, which is
located at A from the crack.
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Fig. 8. Encrgy release rate of hybrid sandwiches. Mixed mode hybrid sandwiches can be obtained
by superposition.
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Here v is measured from the neutral axis, £ and M are torce and moment, 4 and [ are
dimensionless cross-section and moment-of-inertia, given by

A=[+%X . (39a)
I=Z[(A=3 = (A=) +1/3]+AHA -0+ (V3. (39b)

An expression similar to (38) holds for the beam ahcad of the crack, with
Ay =2C+Z), L, =30-Z)X"+Z(1+0)]. (40)

The energy release rate is the difference in the strain energy per unit length stored far
behind and far ahcad of the crack tip. The results are given in Fig. 8. The mixed mode
energy release rate can be obtained by superposition.

7. CONCLUDING REMARKS

The calibration of fracture specimens for unidirectional composites is complicated by
many clastic constants. At least two non-dimensional material parameters arc involved in
the numerical analyscs of fracture specimens reported to date. In contrast. by using a spatial
rescaling technique, only the effect of p = (E E2)"*/2G s — (v;2v1,) " ? needs to be calibrated
numerically, the dependence of another parameter, 4 = E,/E,, is known analytically. In
particular, for SEN, DEN. CC and ENB specimens. a single correction factor Y(p) is found
to be sufficient to obtain the stress intensity factors from the corresponding isotropic results.
For mode I and mode Il beam specimens, the energy release rates are expressed in such a
way that the leading term is the simple beam theory solution. The calibration of mixed
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mode beam specimens is much more ditficult, since the mode mixity changes with the beam
thickness ratio and the crack length.

Attention in this article has been focused on the interplay between matcrial anisotropy
and finite geometry. However, material orthotropy may also play an important role in
bridging phenomena. In fact, all fracture and fatigue cracking processes in composites are
subject to resistances that increase with crack extension. because of various bridging effects.
The coupling of material orthotropy and bridging merits further study.
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APPENDIX
Let the coordinates v, v and = coincide with principal matenial directions of an orthotropic material. For
plane striin problems, the governing equition and the delinition of 4 and p remain unchanged, but the celastic
constants need to be replaced by
Ey=FEil—vivgh vip=(vpdrava)itb=varyg)

Ey=E(L=vvn), vy o= (v el —v v {AD

There is no need to change the shear modulus, G, This replacement should be done with all the solutions in the
text if the plane strain conditions prevail.



